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The stability of a layer of ideal incompressible liquid located on the wall of an axially symmetric container which uniformly rotates 
around its axis under conditions of weightlessness is investigated in the case when the free surface of the liquid is a circular cylinder. 
The stability of the relative equilibrium of the liquid mass depends on the coercivity of a certain bilinear form in the corresponding 
Hilbert space. The investigation of this coercivity is reduced to an auxiliary eigenvalue problem which is solved using the methods 
of functional and classical analysis. Two cases are considered depending on the curvature of the meridian of the container at the 
points where it comes into contact with the free surface of the liquid in relative equilibrium. The first of these cases is reduced 
to a classical eigenvalue problem and the second to a Steklov problem. Sufficient conditions for the stability of the relative 
equilibrium of the liquid, which depend on the curvature of the above mentioned meridian and on the angular velocity of the 
rotating container, are found. © 2001 Elsevier Science Ltd. All rights reserved. 

The stability of the equilibrium and of the steady motion of a liquid mass placed in a moving or fixed 
container has been the subject of numerous papers which are described in the monographs [1, 2].* In 
particular, problems on the stability of the relative equilibria of a liquid mass in a reservoir which is 
rotating under weightlessness conditions have been considered in [2]. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  AND T H E  E Q U A T I O N S  OF 
M O T I O N  OF T H E  L I Q U I D  

Suppose an ideal incompressible liquid of density P is located in an axially symmetric container with 
an axis of symmetryz and a plane of symmetryxy, which rotates around the z axis with a constant angular 
velocity o~ 0. The following notation is used: (r, 0, z) are cylindrical coordinates in which r = f(z) is the 
equation of the meridian of the container (Fig. 1). We assume that the liquid is located on the walls of 
the container. 

When the condition for the existence of a relative equilibrium when there are no gravitational forces 
is satisfied. The liquid pressure at a point M(r, O, z) is defined as 

Po(M) = po~2r 2 / 2 + c (c = const) 

Laplace's law has the form 

P01r - P0 = -or(k1 + k2) 

tPrikl. Mat. Mekh. Vol. 65, No. 4, pp. 619-630, 2001. 
:~Editor's note. The problem of the stability of the steady motion of a body with a capillary liquid has been reduced (see 

RUMYANTSEV, V. V., The stability of the motion of a rigid body with a liquid possessing surface tension, Prikl. Mat. Mekh. 
1964, 28, 4, 746-753) to the problem of the minimum of the augmented potential energy. This technique was subsequently used 
to investigate a number of specific problems (see, for example, SAMSONOV, V. A., Stability and bifurcation of the equilibrium 
of a body with a liquid. Nauchnye Trudy Inst. Mekh. Moskovsk. Gos. Univ. (MGU), Izd. Moskovsk. Univ., Moscow, No. 16, 
1971; SLOBOZHANIN, L. A., The stability of the cylindrical state of a rotating fluid. In Mathematical Physics and Functional 
Analysis. Fivziko-Tekhn. Inst. Akad. Nauk UkrSSR, Khar'kov, Issue 2, 175-181). 
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Fig. 1 

where P0 is the external pressure, c~ is the surface tension, which is assumed to be constant, and 
1 1 k 1- and k~ are the radii of the principal curvatures of the free surface F, measured in a positive direction 

along the vector nr  of the unit normal,  which is outward with respect to the fluid. The surface F is 
therefore defined by the partial differential equation 

pco~r 2 12 + c - Po = -°~(kl + k2 ) 

The case is considered when F is part  of a cylindrical surface r = a. In this case, kl = 0 and k 2 = a -1. 
We then have 

Po(M) = pO~/2 ( r  2 - a 2 ) +  Po - o ~ l  a 

The domain occupied by the liquid in relative equilibrium is denoted by f2, S is the wetted surface 
of the wall of the container, C and C'  are the circles of intersection of the cylinder r = a with the wall 
of the container, and h and - h  are the distances of the centres of  the circles C and C" from the middle 
plane. 

We will assume, in accordance with the capillarity law, that the free surface of the liquid intersects 
the container wall at a constant angle and we will denote the angle between the vectors n]- and n~ by 
y, where n s is the vector, directed outside f2, of the outward normal to the surface S with respect to the 
domain, and n]- = -nr .  We have 



Stability of a configuration of a liquid layer in an axially symmetric container 607 

a =f(h); fz(+ h) = -7-tgy (fz = df/dz) (1.1) 

We will now write the equations for small motions of the liquid in the neighbourhood of the relative 
equilibrium position which is assumed to be stable. 

Suppose P(t ,  M )  is the pressure at a point M at the instant of time t. We introduce the dynamic 
pressure 

p(t,  M)  = P(t ,  M)  - Po(M) 

Suppose w is the relative displacement of a liquid particle. When there are no bulk forces, Euler's 
equation and the incompressibility equation can be written in the form 

~w I t)2W I - 2 t O o Z X - - + - - g r a d p = 0 ,  d i v w = 0  (1.2) Ot 2 at p 

To these equations, we add the impermeability condition of the liquid on the container wall 

w .  Is = w . n  s = 0 (1.3) 

Laplace's law on the perturbed free surface F(t) is written in the form 

P It .)  -Po = -¢t(kl + k2) 

where  f¢1 and f£2 are the principal curvatures of the surface F(t). 
We will represent the equation of the surface F(t) in the form r = a + ~(z, 0, t), assuming that the 

function ~ and its derivatives are small in absolute magnitude. If M0[ r is a point belonging to the surface 
F and M [ r(0 is the point of in~rsection of the normal to the surface F at the point M0 [ r with the surface 
F(t), then we have M01 r M[ ~'~) = -~nr.  

By virtue of the classical result in [2], we obtain 

(k, + k2)- (k~ + k2) = -(k? + k~ K -  ar4 + 0(4 2) 

where Ar is the Laplace - Beltrami operator, from which it follows that 

(kl + k2) = a 'a - a - 2 ( ~  + d4~z + ; )  

apart from terms of the second order of smallness. 
On the other  hand [2], 

P(MIr(,)) - P0(M0lr) = p(MoIr) - 4 grad P0(M01r) " nr 

Laplace's law then ensures that the condition 

p = Ota-21400 + a24zz - (v 0 - 1)41 in F, v 0 = pa3to02a -I (1.4) 

is satisfied. As is well known ~ must be a 2n-periodic function in 0 and satisfies the condition 

S 4 dr" = 0 (dF  = adOdz) (1.5) 
F 

which expresses the constancy of the liquid volume. 
Finally we write the condition that the surface F(t) intersects the container wall at a constant angle. 

We shall seek the intersection of F(t) and the wall. Suppose ~ = h + e(0, t)(~ = -h  + rl (0, t)) is the 
neighbourhood of one of the points of intersection, which is in the vicinity of the upper (lower) circle. 
Then, up to the first order of smallness, 

E = --ctg y~(h, O, t); r I = ctg "t~(-h, 0, t) 

Now, on writing the condition n, • n~ = cos y for ~ = _ h  + e, we find 
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~z = 7- I-t~ npn z = +h, la =fzz(h)cos 3 3'/sin 7 (1.6) 

The parameter  bt therefore depends on the curvature of the meridian of the container at the points 
z = _h. It is positive (negative) if, at these points, the meridian (concavex) with respect to the z axis. 

Euler's equation is unchanged when an arbitrary function of time is added to p. This function can 
be found in such a way that the result will belong to the class 

f f ( F ) = { t p ~ f f ( F ) :  rStPdF=O} 

Condition (1.4) can then be replaced by the condition 

. 2 2 ~ t  

P = a ~ [tOO + a 2 ; z z  -- ( V o  - -  1);] + ~ ~ [;(h, O, t) + ; (-h,  O, t)]dO na F ( /  4"/I;/I 0 
(1.7) 

wherep  E L,2(F). 
We introduce the domain f20 = {(0, z): 0 < 0 < 2rt, -h  < z < h} and the unbounded operator B1 

which acts on functions from the class 

/-'2(fa°) = { ~ ~ L2(f~°): ~n0 ~d0dz = 0} 

and is defined by the relation 

~ h  2r¢ B,~=-~00-a2~zz + ( v 0 - 1 ) ~ -  5 [~(h,O,t)+~(-h,O,t)]dO 
0 

Its domain of definition is such that 

D(BI)={~ ~ H2(~o); J" ~d0dz=0; ~z = Tbt~ 14ari z =+h; 
f I  o 

and the traces ~ of orders 0 and 1 coincide at the points 0 = 0 and 0 = 2re in the sense of the space 
L2(-h, h). 

We shall seek the bilinear form associated with B1. For this purpose, we calculate the scalar product 
(BI~, ~)L2(r), ~, ~ ~ D(B1). On integrating by parts and taking condition (1.6) into consideration, we 
obtain the required bilinear form 

b,(;,~) = 
2~ 

I[;o~o + a2;z~z + (Vo - l )~]dOdz  + laa j'[;(h,O)~(h, 0)+ ;(-h,O)~(-h,O)]dO 
~0 0 

(1.8) 

where ~(_h, 0) denotes the traces ~ on the sides z = _h  of the boundary of the domain £20. The bilinear 
form b1(~1, ~) is defined for the set of functions 

V 0 = { ~ H l ( ~ o ) :  ~ ~dOdz=O; 
f/0 

the traces ~ of order 0 coincide at the points 0 = 0 and 0 = 2re in the sense of the space L2(-h, h)}. 
Equations (1.2)-(1.3) and (1.5)-(1.7) describe small motions of the liquid. 

2. THE S U F F I C I E N T  C O N D I T I O N S  FOR THE S T A B I L I T Y  
OF A R E L A T I V E  E Q U I L I B R I U M  

We multiply Eq. (1.2) scalarly by p3w/3t and integrate with respect f2. We have 

dt 2n  p S gradp. = 
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Taking conditions (1.2), (1.3) and (1.7) into consideration, we can write 

t ~ l d  b ~Wd~=~t r ~'-~'-~a2 r B';';tdI"=--~bl(;';t)a "a-2"2-~t 1(;,;)  n~ grad p -~  P ~ t a r  = = 

Consequently 

7, yI =0 

By virtue of the theorem on the change of energy, the last term in the square brackets is the potential 
of the centrifugal and capillary forces.t 

The stability of the relative equilibrium of the liquid with respect to II ~ I IL2(n0), II to t lL2(~O), II ~ I IL2(~0), 
and, hence, with respect to I t  I lua(a0) and also with respect to II ~w/~t I IL2(~0) is ensured by the strict 
coercivity of the bilinear form bl(~, ~) (that is, by fact that the quadratic form bl(~, 4) is positive definite 
(editor's note)) in the set V0. 

Note that stability also holds with respect to II 4(-+h, 0) II L2(0, 2=) when the mapping of the trace of 
Hi(f20) into L2(0, 2rt) is continuous. 

Hence, the stability problem reduces to investigating the coercivity of the bilinear form bl(~, ~). It 
is necessary to distinguish two cases: g/> 0 and g > 0. 

Suppose 

3. INVESTIGATION OF THE COERCIVITY OF THE FORM b,(~,~). 
THE CASE WHEN ~t i> 0 

if, = [ [ ~  + a 2 ~  + Vo~ 2 ]dOdz 
f/o 

27t 
~'2 = g a 2 ~  [;2(h,O)+~2(-h,O)]dO,  ~-3 = j ;2dOdz 

o fl o 

We denote the function, the lower boundary of which 

v =  inf F(~) (3.1) 

has to be found, by 

F(~) = (ffl + ~-2)ff31 

It can be shown that, if v > 1, the bilinear form bl(~, ~) is coercive in V0. We use the well-known method 
in [4, 5]. 

A lower bound ofv exists and it is positive or it vanishes. According to the definition of a lower bound, 
a sequence {~n} • V0 exists such that 

v =  lira F (~ . )  
n - - ~  

By the Rellich and Banach-Saks-Mazur theorems [4, 5], it can be proved that the sequence {~n} 
converges in a weak sense in Hi(f20) and in a strong sense in L2(~0), the limit function U belongs to 
V0, the lower bound is attained for ~ = U and the quantity u is strictly positive. 

We will now find the partial differential equation and the boundary conditions which the quantity U 
satisfies. According to the definition of v, we have 

~-i + ~-2- v~-3 I> 0, V~ ~ Vo 

tEditor's Note: This potential was called the augmented potential energy by V. M Rumyantsev. See the publication cited in 
the footnote on page 605. 



610 

We put 
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=U+e~i~  when 5 4 e  Vo, e e  R 

Since U ~ V0, variation of this inequality with its subsequent transformation taking the boundary 
conditions into account gives 

[ . l a 2  2 n  

Uoo - a2U= + (v - v o)U + 4rth S [U(h, O) + U(-h, 0)]d0 = 0 (3.2) 
o 

Since the coefficients of this elliptic equation are constant, its solutions are functions which belong to 
the class C =. 

The boundary conditions are then derived in a classical manner 

U z = ~-gU, z = +h; Uo(z, 27t) =Uo(z, 0) (3.3) 

which, in conjunction with the integral relation 

I UdOdz = 0  (3.4) 
no 

completely determine the solution of the boundary-value problem for which v is the least eigenvalue. 
We will find the eigenvalues of problem (3.2)-(3.4) and the conditions for which the least of the 

eigenvalues is strictly greater than unity. 

4. I N V E S T I G A T I O N  OF T H E  A U X I L I A R Y  
E I G E N V A L U E  P R O B L E M  W H E N  g l > 0  

We separate the variables 

U = O(0)Z(z) 

and put O', Z ' . . .  instead of ®o, Zz . . . . .  The notation 

2 n  h 

3-0 = I O(0 )d0 ,  3-z = I z(z)az 
0 - h  

is used. 
The equation and conditions (3.2)-(3.4) then take the form 

[.ta 2 
O " Z + a 2 O Z " + ( V - V o ) O Z +  [Z(h)+Z(-h)] f f  o = 0  

4 rch 

O(0) -- O(0 + 27t); Z'(+h) = -laZ(-T-h); 3-O3-z = 0 

It is necessary to distinguish between the cases when # > 0 and p. > = 0. 

The case when g > 0. 1. Suppose 3-0 = 0. We have 

O'" a2Z" + ( V - V o ) Z  
= - - - - n  2 , n = l , 2  . . . .  

0 Z 

because of periodicity. 
Hence, we have 

O(0) = A, cos nO + B, sin nO, 

and the boundary conditions 

A n ,  B n - a r e  constants 

$ 

(4.1) 

(4.2) 
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Z " ÷ v - n  2 - v  0 z = 0 ;  Z'(+h)=T-l.tZ(+h), n=i, 2 .... 
a 2 

This equation can be integrated but, since we are discussing a classical Sturm-LiouviUe problem, there 
is no need to do this. 

If we put 

V --  n 2 - -  V 0 ----- a2~,2 n ; 

then each problem (4.1) has a denumerable set of eigenvalues ~'nm such that 

O < X , , , ~ k ~ 2 ~ . . . ~ k , m ~  .... ~.,m-->+oo, m- . ->+o.  

The functions Zn,~ form, for each n, a complete orthogonal system in L2(-h, h) 
The eigenvalues, corresponding to problem (3.4), have the form 

Vnm = t/2 + V 0 4- a2~,2nr n 

They are all greater than unity. 
2. Now suppose 3-z = 0. Integrating Eq. (4.1) with respect to 0 from 0 to 2r~ and combining the result 

with this condition, we obtain O --- const and the problem 

Z" + ~ 2  ° Z+-~hh tZ(h)+ Z(-h)]=O; Z'(4-h)=-T-i, tZ(-I'h); ~-z=O (4.3) 

We will now show that (4.3) is a standard eigenvalue problem by demonstrating its variational 
formulation. On multiplying both sides of the differential equation by the function Z(z), such that 

h 

J ~(z)dz = o 
-h 

integrating the resulting expressions over the interval [-h, h] and then integrating by parts, taking account 
of the boundary conditions, we obtain the variational formulation in classical form: it is required to 
find a function Z e ~1 (-h, h) such that 

i Z 'Z 'dz  + ga2[Z(h)Z(h)  + Z ( - h ) Z ( - h ) ]  = ~ - 9 - ( Z ,  Z)c2~_h,h) 
-h a 

V2e[-P(-h, h), [-ll(-h,h)={ZeHt(-h, h): ffz=0} 

We introduce the space 

L2(-h,h)={Z~L2(-h,h): ~z = O} 

in a natural manner. 
The bilinear form 

h 
a(Z,  2)  = S Z'Z'dz + I.ta2[Z(h)Z(h) + Z ( - h ) Z ( - h ) ]  

-h 

is symmetrical, continuous and coercive in 21 (--h, h) and the injection from Hl(-h ,  h) into LE(--h, h) 
• 1 Is continuous, dense and compact, as easily follows from the analogous properties of H (-h, h) and 
L2(--h, h). 

Problem (4.3) therefore has a denumerable set of positive eigenvalues V0m (m = ), 1, 2 . . . .  which 
form a non-decreasing sequence that tends to infinity. The eigenvalues of problem (3.4), such that 
V0m - v0 > 0, correspond to them. The corresponding eigenfunctions Zorn form a complete orthogonal 
system in L2(-h, h). 

Since 1, cos 0, sin 0 . . . . .  cos nO, sin nO, ... form a complete orthogonal system in L2(0, 2n), it follows 
from a classical theorem in [3] that Z01 . . . . .  Z0m, ... and Znm cos nO, Znm sin nO form a complete 
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or thogonal  system in L2(~20). Hence ,  the me thod  of  separat ion of  variables yields all the eigenvalues 
of  p rob lem (3.4) in the case when ~t > 0. 

The  eigenvalues in the case when ~-0 = 0 are greater  than unity. We shall seek under  what conditions, 
the eigenvalues when 3-~ 2= 0 possess the same property.  

We put  a-Z(v - v0) = z and solve p rob lem (4.3), starting out f rom 

Z(z )  = A cos(×z) + Bsin('l:z) - 2-~zz [Z(h) + Z(-h)]  

Assuming xh = ×, we obtain the equat ions  for  the eigenvalues 

× 1 × 
t g × -  ; - - - c t g ×  = - - -  

I.th × ~th 

Graphical  analysis shows that the least value ×1 of  the unknown × is located between re/2 and ~. Assuming 
• 1 = ×l/h, we find the least eigenvalue in the case when ~-z = 0 

V z = V 0 + a2"~ 

We conclude that when la > 0, if 

v o + a2x~ > I (4.4) 

then all of  the eigenvalues of  problem (3.4) are grea ter  than unity. 

The case when  ~t = 
if0 = 0, the eigenvalues v are such that 

v ~ n 2 + v 0 > l  

When  ~z = 0, simple calculations show that, when the condit ion 

V~ = V o + > ! 
k. 2 h J  

0. The  arguments  are analogous in this case but somewhat  simpler. When  

(4.5) 

is satisfied, the least, and together  with it, all of  the remaining eigenvalues are grea ter  than unity. 

The sufficient cond i t ion for the  stability o f  a relative equilibrium. We will now show that, in the case when 
~t /> 0j if the lower bound v of  the ratio f rom relation (3.1) is greater  than unity, the bilinear form 
bl(~, ~) is coercive in V0, and it follows from this that the relative equilibrium position of  the liquid is 
stable. 

F rom the definition of  v, we have 

Using this inequality, we conclude that, if e is a number  such that 0 < e < 1, then 

bl(~, ~) ~ E{~-I + if2} + [(l - £ ) v  - 1]~- 3 

Then,  on choosing 0 < e < 1 - ~-1, which is permissible, we have 

b l (~ ,~ ) l>e [$ - l+~ '2 ] ,  V ~ e  V o 

whence it follows that  the form bl(~, ( )  is coercive in V0. Hence ,  when ~t > 0 (~t = 0, respectively), the 
inequality (4.4) ((4.5), respectively) is a sufficient condit ion for the stability of  the relative equilibrium 
of  the fluid. 

Remark. If the container is fixed (6% = 0), it is possible to repeat the arguments of the preceding discussion, 
since the norm 
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d o (42 +a2~2)dOdz]~ 

in V0 is equivalent to the norm in Hl(f~0). 
When p. > 0 and too = 0, the condition axl > 1 is also a sufficient condition for the stability of the equilibrium. 

Hence, uniform rotation stabilizes the motion. 
When la = 0 and to o = 0, there is an eigenvalue v = 1 in the case when ~0 = 0 and it is impossible to draw any 

conclusion regarding the stability of the equilibrium. 

5. I N V E S T I G A T I O N  OF T H E  E I G E N V A L U E  P R O B L E M  W H E N  p. < 0 

Reduction to an eigenvalue problem. 
Suppose 

G(~) = ~ 1 ( ~ " 3  - ~ ' 2 )  - I  

we shall now seek 

v = inf G(~) (5.1) 
r~eVo 

A lower bound exists, it is positive and equal to zero. According to the definition of a lower bound, a 
sequence {~n E V0} exists such that 

v = lim G(~,)  

As in the case when ~t i> 0, it can be shown that the sequence {~n} converges in a weak sense in Hl(f~0) 
and in a strong sense in L2(f20), the limit function U belongs to V0, the lower bound is attained for 
0 = U, the inequality v > 0 is satisfied and the function U satisfies the partial differential equation and 
the conditions 

Uoo + a2Uzz + ( v -  Vo)U + Vl'ta2 2n 41th ~ [u(h,O)+u(-h,O)]dO = 0 
0 

u(z,O)=u(z,2n), %(z,O)=ue(z,2n); uz=-T-vgu for 

I .dOdz  = 0 
fl  o 

z = + h  

(5.2) 

where v is the least eigenvalue of the problem. 
Problem (5.2) is a Steklov problem since the eigenvalues v occur in the boundary conditions. 
We will now show that we are dealing here with a standard eigenvalue problem On multiplying the 

equation from (5.2) by u ~ V0, integrating with respect to D.0 and taking the periodicity and the boundary 
conditions into account, we obtain the variational formulation of the problem: it is required to find a 
function u ~ V0 and a real number  v such that 

[UoUo +a2uzv z +v0uv  ]dOdz = 
f l  0 

= uudedz -ga  2 ~ [u(h,e)u(h,e)+u(-h,e)u(-h,e)]de v, 
0 

V e V 0 (5.3) 

The coefficient of  v is a scalar product since ~t < 0. 
We therefore introduce the space ~ which competes V0 with respect to the norm associated with the 

scalar product 

2~ 

(u ,v)~ = 5 uvdOdz - lad 2 S [u(h, O) v(h, O) + u(-h, O)u(-h, 0)]d0 
rio 0 
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The first term in (5.3) is a bilinear symmetric, continuous and coercive form in V 0. The injection of V 0 
into ~ is dense and continuous. We will now show that it is compact. For this purpose, we consider a 
sequence {un} e V0 which converges weakly to u in V0. The sequence {un} converges strongly to u in 
L2(~0) and the sequence {un(+__h, 0)} converges strongly to u(+_h, 0) in L2(0, 2~) by virtue of the 
Sobolev-Kondrashov theorem. Hence, the sequence {un} converges strongly to u in the space ~ .  

Problem (5.2) admits of a denumerable set of positive eigenvalues which form a non-decreasing 
sequence that tends to infinity. The corresponding eigenfunctions form a complete orthogonal system 
in the space ~.  

Investigation o f  the auxiliary eigenvalue problem. On seeking solutions of problem (5.2) in the form 
u = ®(0)Z(z), we obtain 

(9"z  + a20Z "' + (v - v 0)OZ + vga2 [Z(h) + Z( -h) ]~  o = 0 
4•h 

O(0) -= O(0 + re), Z'(:th) = -vgZ(+h), ~e~% = 0 

(5.4) 

The case when ~-0 = 0. We have 

0(0)  = An cos nO + B, sin nO 

and the equations 

Z" + (v - n 2 - v0)a-2Z = 0, Z'(+h) = -vgZ(:t:h) n = 1, 2 .... (5.5) 

As above, it is clear that the Steklov problems are standard eigenvalue problems. For each n, the eigen- 
values Vnm ~ "t" ~ as m ~ ~ .  We now find the least among them which are strictly less than n 2 + v 0. 

We put 

V - - n  2 - V  0 = - a 2 3 2 2  n < 0  

and slove problem (5.5). We obtain the equations 

th(~.nh) =-vp./32n, cthO~,h)=-vg/~ n 

Simple graphical analysis gives the following results. The first equation has a root X °. The second 
equation does not have a root if the quantity - g h ( n  2 + v0) is less than unity and has a single root if 
this quantity is greater than unity. We conclude from this that the least eigenvalue is equal to 

Vnl = n 2 .a t. V 0 -- a2~,  O2 

This quantity is greater than unity if 

32 ° < × = a  -14n 2 - 1 + v  0 

This condition is equivalent to the inequality th × > -gh/× so that × > ×0(gh), where the quantity x0(gh), 
which is independent of n, is the abscissa of the point of intersection of the curves y = th(×), y = -gh/x. 
Hence, the condition vnl > 1 can be written in the form 

n 2 - 1 + Vo 2 > a 2 h - 2 x 2 ( l . l . h )  

Finally, all the eigenvalues V~m (n, m = 1, 2, 3.. .)  are greater than unity if the inequality 

V 0 > a2h-2×o2(lah ) (5.6) 

is satisfied. 

The case when ~-z = 0. In this case, we obtain that the quantity (9 is constant, and the problem has 
the form 
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Z "  +-~-f(V-Vo)Z+-~hh [Z(h)+ Z(-h)]=O, Z'(+h)=-T-vl.tZ(++.h); ~-z=0  (5.7) 

We will now show that  this Steklov problem is a s tandard eigenvalue problem and, by solving problem 
(5.7), we shall investigate the least of its eigenvalues. 

If a least eigenvalue of  the initial p rob lem exists which is less than v0, then it is s imultaneously an 
eigenvalue of  p rob lem (5.7). 

On putt ing v - v0 = -a2L 2 < 0 and solving prob lem (5.7), we obtain 

th × = -×(ghv)  -1, cth × - ×-I =_×(ghv)-J (× = Xh) (5.8) 

Simple graphical analysis shows that, if v0 ~ - ( g h )  -1, these equat ions  do not  have solutions and, 
consequently,  eigenvalues which are less than v0 do not  exist. If  v > - (gh )  -1, the least eigenvalue is 
equal to 

• _ a 2 h - 2 ~  2 
v 0 --- v 0 

where  ×~ is the root  of  the first of  the equat ions (5.8). The  condit ion a)' 0 > 1 is only satisfied 
when 

' 

×o < ha-l - 1 

o r  

th u < - u ( l J . h )  -1  (U = ha -I ~ o  - 1 ) 

Moreover ,  v'0 > 1 if the conditions 

- (gh)  -I I> 1, v o > - ( g h )  -1 

o r  

-(I.th) -I < 1, v 0 > 1 + a2h-2~2(~) 

are satisfied, where  6(gh) is the root  of  the equat ion th u = -Olh)-lu.  
On combining these conditions with condit ion (5.6), we conclude that: if the conditions 

-(p.h) -1 ~ 1, v 0 > max(-(gh)  -1, a2h-2x~(~h)) (5.9) 

or the condit ions 

- (gh)  -I < !, v 0 > max(l +a2h-2~2(I.th), a2h-2×20(lah)) (5.1o) 

are satisfied, then  all of the eigenvalues of  problem (3.4) are greater  than unity. 
We will now investigate the case when v0 ~< - (gh )  -1. In this case, the least eigenvalue of  problem (5.7) 

is greater  than or  equal  to u0. On putt ing v - v0 = 0 in (5.7), we find, in an e lementary  manner ,  the two 
values of  v = - (ph )  -1, v = -3 (gh)  -1. We then obtain: if 

-(I.th) -I > !, a2h-2 <-(I-th)-l×o2(I -th) (5.11) 

and if 

Vo = - (~h)  -1 (5.12) 

then all of the eigenvalues of  problem (3.4) are greater  than unity. 
Finally, we investigate the case when v - v 0 > 0. On putt ing v - v0 = a2~, 2 > 0 and solving system 

(5.7), we obtain the equat ions 

tg × = - ~ ( l a h v )  - 1 ,  ;~ - !  - ctg × = -×(kthv) -1 
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Graphical analysis shows that these equations have a denumerable set of different roots, the least of 
which t0 is the least root of the first equation The least eigenvalue of problem (5.7) 

90 = v 0 + a2h - 2 ~  

corresponds to it. The condition 90 > 1 is written as 

a2h-2~ 2 > i - v  0 

This condition is satisfied i fv  0/> 1. I f v  2 < 1, then it can be written as 

~o > ha-14 ! - v 0  

Proceeding as above, we see that 90 > 1 if 

-(lah) -I > 1 and 1 -a2h-2~2(lx, h) < v o < 1 

where 13(ph) is the root of the equation tg u = -u(ph)  -], which is located between 0 and n/2. 
On combining these inequalities with condition (5.6), we have the following result: if the conditions 

-(lah) -1 >l ,  a2h -2 <-(~th)-l×(~(lah) 

max(! - a2h-2~J2(~h), a2h-2×02(lah)) < v o < -(~h) -j (5.13) 

are satisfied, all the eigenvalues of problem (3.4) are greater than unity. 

The sufficient conditions for the stability of  a relative equilibrium. We will now prove that when ~t < 0, 
if the lower bound v of the ratio in relation (5.1) is greater than unity, the bilinear form is coercive in 
V 0 and the position of relative equilibrium of the liquid is stable. 

From the definition of v, we have 

By virtue of this inequality in the case of a number E which is such that 0 < e < 1, the relation 

bl( ~, ~)= eft] + [(1 - e ) V -  111 ~3 -~'2} 

is satisfied. On choosing e such that 0 < e < 1 - V -1, we have 

b,(~,~) ~> EO-j, V ~ V  o 

which implies the coercivity of the form b 1 (4, ~) in V0. 
Finally, if ~t < 0 and either one of conditions (5.9) and (5.10) or conditions (5.11) and (5.12) or 

conditions (5.13) are satisfied, the relative equilibrium position of the liquid is stable. 
Hence, the value of the parameter  ~t and, together with it, also the curvatures of the meridian at the 

point of contact with the liquid surface, have a substantial effect on the nature of the stability of the 
relative equilibrium. Here,  the shapes of containers for which - (ph)  -1 > 1, -(~Lh) -1 < 1 when ~ < 0 can 
be indicated. 
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